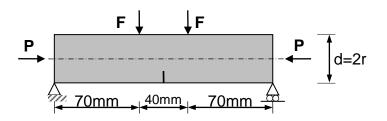

Problema 1

Na variante cimentada do implante femoral, o cimento ósseo é interposto entre o implante metálico e o osso. Para qual das duas variantes (cimentada ou não cimentada) será mais evidente o fenómeno de "stress shielding" ("blindagem" de tensões). Justifique a sua resposta.

Nota: O cimento ósseo é um material com uma rigidez inferior ao da haste metálica. Considere que o diâmetro do canal medular é idêntico nas duas variantes e que a haste metálica cimentada tem um menor diâmetro de que o diâmetro da haste não cimentada.

Problema 2


Um ensaio de fadiga permite relacionar uma tensão alternada nominal aplicada a um provete com o número de ciclos suportados até este atingir a rotura. Um ensaio de fadiga do córtex de um fémur, realizado com uma frequência de 2 Hz em níveis super-fisiológicos de esforço, conduziu à seguinte relação:

$$N = \frac{3.2 \times 10^{28.7}}{\sigma^{14.1}}$$

expressão onde a tensão σ está expressa em MPa e N representa o número de ciclos. Considere a relação constitutiva $\sigma = E.\varepsilon$, onde ε representa a extensão normal e admita para o osso cortical um módulo de Young E=20GPa.

- a) Perante uma solicitação de extensão super-fisiológica de $3000\mu\epsilon$ (= 0.3%), indique o valor do número de ciclos para o qual ocorre a falha.
- b) Extrapolando o resultado do ensaio de fadiga para uma situação de uma pessoa a caminhar normalmente (solicitação correspondente a um valor fisiológico de esforço) e admitindo uma actividade regular, resultaria uma falha para um número de ciclos correspondente a vários anos de caminhada. Será válido fazer esta extrapolação? De que modo a remodelação óssea irá alterar ou influenciar o resultado da extrapolação? Justifique.

Problema 3

Um provete cilíndrico de osso compacto bi-apoiado (com diâmetro d=32 mm, área A=0.6x10³mm², segundo momento de área I=48.3x10³ mm⁴), está sujeito a um carregamento axial P e transversal F (ver figura).

- a) Considere P = 20KN,
 - F = 3KN. Para a secção a meio vão (x = 90mm), calcule a máxima tensão de tracção e a máxima tensão de compressão devido à acção combinada de P e de F (tensão devido à carga axial σ = P/A; tensão de flexão σ = M.r/I, onde M representa o momento flector).
- b) Considere o osso como material isotrópico com um valor de tensão de falha à tracção σ_{tf} = 133 MPa e tensão de falha à compressão σ_{cf} = 195 MPa. Verifique se existem condições para a falha do provete; utilize o critério de Mohr (σ_1/σ_{tf} σ_3/σ_{cf} = 1, onde σ_1 e σ_3 são a maior e a menor tensão principal)
- c) Considere apenas a actuação da carga transversal F = 3KN. Considere a existência duma fenda semicircular de raio a = 1 mm a meio vão na extremidade sujeita à máxima tensão normal de tracção (ver figura). Para a geometria e carregamentos considerados, o factor intensidade de tensão é obtido através de $K = 2.05 \sigma (a/\pi)^{1/2}$. Considerando que o osso tem um valor mínimo de tenacidade à fractura $K_C = 2.2$ MPa.m^{1/2}, verifique se existem condições para uma propagação catastrófica da fenda.